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Abstract. In x-ray spectromicroscopy, a set of images can be acquired across an absorption edge to reveal chemical specia-
tion. We previously described the use of non-negative matrix approximation methods for improved classification and analysis
of these types of data. We present here an approach to find appropriate values of regularization parameters for this optimization
approach.
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ANALYSIS OF SPECTROSCOPIC IMAGING DATA

Near-absorption edge resonances provide information on chemical speciation of the element in question. In biological
and environmental systems, one might have a rich set of partially overlapping resonances, making interpretation
difficult. In addition, chemical variation can occur on nanometer-length scales, so that spectroscopic imaging is
required in order to see the regions with distinct chemical characteristics.

Several multivariate statistical analysis approaches have been used in spectroscopic microscopies. For cases where
one does not have a set of well-defined reference spectra, we have described the use of cluster analysis [1] to find
the dominant spectroscopic themes in a dataset of optical density D(x,y,E) = − ln[I(x,y,E)/I0(E)] = [DN×P]x,y,
where P denotes the total count of all pixels, as stored in a 1D array, and N is the number of photon energies in
the per-pixel spectra. Our goal is to describe the measured optical density in terms of a set of absorption spectra
µµµN×S for S spectroscopically distinguishable chemical components in the sample, each associated with a thickness (or
“weighting”) map tS×P. That is, we wish to obtain the matrices µµµN×S and tS×P, with S much smaller than both N and
P, such that our data can be represented by

DN×P ≈ µµµN×StS×P. (1)

We have shown in [2] that clustering-based analysis approaches are not guaranteed to be free of aphysical character-
istics such as the appearance of negative optical densities in the analysis results, while non-negative matrix approx-
imation (NNMA, also sometimes called “non-negative matrix factorization” [3]) methods can yield improved inter-
pretability. The results in [2], along with references therein, have led to improvements in spectromicroscopy analysis
of carbon near-edge x-ray absorption data from human sperm; see Fig. 1.

OPTIMIZATION-BASED APPROACH USING REGULARIZERS

The approach we have described in [2] involves the constrained minimization of a global cost function F of the form

F(µµµ, t) = F0(µµµ, t) + λt F1(µµµ, t) + λµ F2(µµµ, t)
= ||D−µµµ t||2F + λt ||t||1 + λµ ||µµµ−µµµcluster||22,

(2)

where F0(µµµ, t) = ||D−µµµ t||2F is a Frobenius norm “data-matching” cost based on Eq. 1; F1(µµµ, t) = ||t||1 is a “sparsity”
regularizer based on minimizing the one-norm of the thickness map t (thus favoring solutions where each spectroscop-
ically distinguishable component shows up in as few pixels as possible); and F2(µµµ, t) = ||µµµ−µµµcluster||22 is a regularizer
seeking minimal adjustments to a target set of spectra µµµcluster (in our case, found using cluster analysis, since these are
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1: X-ray spectromicroscopy analysis results obtained by cluster analysis [1] and NNMA [2] including data matching,
sparseness, and cluster similarity regularizers (Eq. 2, λµ = 10 and λt = 0.5). Cluster analysis produces maps with
negative weightings for some regions, which are not allowed by the physics of x-ray absorption, whereas the NNMA
solution delivers an analysis result with recognizable x-ray absorption spectra and positive weightings or thickness
maps. This NNMA result nicely illustrates the large-scale biochemical organization of sperm. Image t3 highlights the
acrosomal cap, flagellar motor, and mitochondrion; image t4 highlights the nucleus where histones are bound to DNA;
image t2 highlights the lipid membrane and flagellum; and image t1 isolates a high-density area in the flagellar motor
with some combination of chemical sensitivity and experimental absorption saturation limits. Image t0 shows residual
errors in the cluster analysis map; no such errors are present in the t0 map when using NNMA, so for NNMA the t0
image is black to reflect this fact.

spectra obtained by averaging measurements from pixels with similar spectroscopic response). In [2], we described an
algorithm for minimizing Eq. 2 subject to the constraints that µµµ and t be non-negative.

If one were to think of the total cost F as a financial one, the challenge would be that the component costs F0,F1, and
F2 are denominated in different currencies. What is the correct “exchange rate” between these costs? This is the role
of the scalar regularization parameters λt ≥ 0 and λµ ≥ 0. Clearly, we can obtain the lowest global cost F(µµµ, t) if we
set both regularization parameters to zero, but this would be done at the expense of losing the desired characteristics of
sparseness or cluster spectra similarity. Formally, we can view our problem as one of multiobjective optimization [4],
where we would like to trade off the three competing objectives F0, F1, and F2 against one another. Such an approach
would lead to (infinite) sets of approximations, with each approximation (t,µµµ) being Pareto-optimal, meaning that no
other (t̂, µ̂µµ) exists that is better in all three objectives simultaneously.

In this work, we focus on a more computationally tractable approach in studying the tradeoffs among the three
objectives. In particular, minimizing the cost function in Eq. 2 for all possible values of (λt ,λµ) corresponds to



generating the Pareto-optimal solutions in special cases. We study these cases by considering a wide range of
regularization parameter values and examining the effects on the three component costs.

10−10 10−7 10−4 10−1

101

102

103

Cluster regularizer λμ

C
os

t F
un

ct
io

ns

10−10 10−7 10−4 10−1
101

102

103

C
os

t F
un

ct
io

ns

Data matching F0

Sparsity F1

Cluster F2

Cluster regularizer λμ

For λt=10-10 For λt=0.5

10−10 10−7 10−4 10−1

103

For λ
μ
=10-10

Sparsity regularizer λt

C
os

t F
un

ct
io

ns

10−10 10−7 10−4 10−1

101

102

103

C
os

t F
un

ct
io

ns

Data matching F0

Sparsity F1

Cluster F2

Sparsity regularizer λt

For λ
μ
=101

2: The three component costs (log scale) F0 (“data”), F1 (“sparsity”), and F2 (“cluster”) obtained by minimizing Eq. 2
for particular (λt ,λµ) values. A. (left) Costs are shown as a function of the cluster-spectra-matching regularizer λµ for
two fixed values of the sparseness regularizer λt . B. (right) Costs are shown as a function of the sparseness regularizer
λt for two fixed values of the cluster-spectra-matching regularizer λµ .

Figure 2 illustrates the resulting tradeoffs among the cost components for the sperm sample and S = 5 different
components (see Fig. 1). Figure 2A shows that the sparsity and data-matching costs are relatively unaffected by
demanding increasing levels of cluster similarity by increasing λµ . On the other hand, the behavior in Fig. 2B shows
that demanding more sparsity (approximated here by F1) can result in substantial degradation of both the data-matching
and cluster-similarity component costs.

Figure 3A shows the behavior of the data-matching cost F0 as a function of both λt and λµ . The resulting surface
reiterates that this cost is considerably more sensitive to larger λt (sparsity demanding) values than it is to λµ (cluster
similarity) and smaller λt values. We note that the F0 plots in Fig. 2 correspond to four different slices through the 3D
surface in Fig. 3A. Our final choice of the regularizers for sparsity λt and cluster similarity λµ is one which emphasizes
very little rise in the most critical cost to minimize, which is the data-matching cost F0(µµµ, t).

SELECTING THE NUMBER OF COMPONENTS S

An important parameter in both NNMA and cluster analysis is the selection of the number of spectroscopically
distinguishable components S to seek. If S is too small, we will arrive at a basis set that cannot reproduce all the
important variations in the data; if S is too large, we may have simply analyzed variations due to noise from photon
statistics or other sources. In principal component analysis, the ordering on a scree plot of the eigenvalues of the
covariance matrix Z=DDT can provide a good estimate of S. If the plot exhibits an “elbow," beyond which eigenvalues
are decreasing only slightly, this can indicate the factor order that marks a transition from variations in significant
signals to only small variations due to noise factors [5]. In cluster analysis, we have used this technique to estimate the
number of significant components S̄ in the sample [1], although in practice the precise number of factors to use may
not be clear, and it has been found to be important to manually examine the analysis result. The number of clusters to
seek would then be S̄.

Since NNMA analysis involves the cost function F0(µµµ, t) that measures how well the solution µµµt matches the
data D, we have a good basis for evaluating the effect of decreasing or increasing the number S of spectroscopically
distinguishable components. By carrying out NNMA analysis with a range of values for S, we can see when the error
F0(µµµ, t) no longer decreases as a function of S (Fig. 3B); we can similarly examine when decreases to S are insufficient
to capture all the important spectroscopic variations in the sample. This topic will be explored further in future work,
where we intend to examine how the component cost function tradeoffs change as a function of the number S of
spectroscopically distinguishable components.
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3: A. (left) Data-matching component costs (log scale) F0(t∗(λt ,λµ),µµµ∗(λt ,λµ)) obtained by minimizing Eq. 2 for
different (λt ,λµ) values. B. (right) By varying the number of spectroscopic components S and calculating its effect on
the data-matching cost function F0, we can estimate the number of distinguishable components needed to account for
the spectroscopic variation in the data. We advocate using 4 or 5 for S; adding more components would not significantly
reduce the cost function.

DISCUSSION

We have used a generalized cost function in NNMA analysis to factorize an optical density map into spectroscopic
component factors and their associated weightings. Regularization parameters in the cost function control the balance
between the need for the solution to closely match the data and the desired characteristics the solution should possess.

We have implemented a systematic and computationally tractable method for exploring the effects of a large range
of regularization parameters on the cost function. An exploratory version of the NNMA analysis approach described
here is implemented in a Python open-source code1 called MANTiS [6], developed by 2nd Look Consulting; a more
refined interface to NNMA analysis is planned for an upcoming release of MANTiS. For the data shown here, the
combined cost function converged to a minimum over about 10,000 iterations, taking about 10 minutes on a laptop
computer. These results show the potential of NNMA analysis on complicated data.
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